Parallel Algorithms to Compute the Eigenvalues and Eigenvectors Ofsymmetric Toeplitz Matrices

نویسندگان

  • José M. Badía
  • Antonio M. Vidal
چکیده

In this paper we present two parallel versions of bisection method to compute the spectrum of symmetric Toeplitz matrices. Both parallel algorithms have been implemented and analysed on a virtual shared memory multiprocessor using a portable message-passing environment. The algorithms very efficiently parallelize the sequential method, and the application of a dynamic strategy to distribute the computations produces better results than the use of a static method. We also improve the performance of the original sequential algorithm by applying Newton’s method for the final approximation of the eigenvalues. However, the bad results of the sequential algorithm produce low speedups when we compare the parallel methods with the best available sequential algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Computation of the Eigenstructure of Toeplitz-plus-Hankel Matrices on Multicomputers

In this paper we present four parallel algorithms to compute any group of eigenvalues and eigenvectors of a Toeplitz-plus-Hankel matrix. These algorithms parallelize a method that combines the bisection technique with a fast root-finding procedure to obtain each eigenvalue. We design a parallel algorithm that applies a static distribution of the calculations among processors and three algorithm...

متن کامل

Inverses, determinants, eigenvalues, and eigenvectors of real symmetric Toeplitz matrices with linearly increasing entries

We explicitly determine the skew-symmetric eigenvectors and corresponding eigenvalues of the real symmetric Toeplitz matrices T = T (a, b, n) := (a+ b|j − k|)1≤j,k≤n of order n ≥ 3 where a, b ∈ R, b 6= 0. The matrix T is singular if and only if c := a b = −n−1 2 . In this case we also explicitly determine the symmetric eigenvectors and corresponding eigenvalues of T . If T is regular, we explic...

متن کامل

Using MPI on PC Cluster to Compute Eigenvalues of Hermitian Toeplitz Matrices

In this paper MPI is used on PC Cluster to compute all the eigenvalues of Hermitian Toeplitz Matrices. The parallel algorithms presented were implemented in C++ with MPI functions inserted and run on a cluster of Lenovo ThinkCentre machines running RedHat Linux. The two methods, MAHT-P one embarrassingly parallel and the other MPEAHT using master/ slave scheme are compared for performance and r...

متن کامل

The Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices

We generalize some recent results on the spectra of tridiagonal matrices, providing explicit expressions for the characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices. The calculation of the eigenvalues (and associated eigenvectors) follows straightforward. Mathematics Subject Classification: 15A18, 42C05, 33C45

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Parallel Algorithms Appl.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1998